General gas Equation for entropy change
- Admin

- Aug 28, 2020
- 1 min read
Consider a certain quantity of perfect gas being heated by any thermodynamic process.
Let m = mass of gas
P₁ = initial pressure of gas
V₁ = initial volume of the gas
T₁ = initial temperature of the gas
And P₂ , V₂ ,T₂ are corresponding values for final condition.
The relation for change of entropy during the process may be expressed in following three ways.
1. In terms of volume and temperature
We know that for a state change from 1st law of thermodynamics
δQ = dU + W₁₋₂
dividing both sides with temperature
δQ = dU + W₁₋₂ -----(1)
T T T
now dU = mCvdT
W₁₋₂ = PdV
δQ = dS
T
dS = mCvdT + PdV -----(2)
T T
PV = mRT
P = mR
T V
Inserting this in equation (2)
dS = mCvdT + mRdV
T V
for whole process
ʃ dS = ʃ mCvdT + ʃ mRdV
T V
(S₂ - S₁) = mCv ln (T₂/T₁) + mR ln (V₂/V₁) -----(3)
2. In terms of pressure and temperature
We know that
(P₁V₁)/T₁ = (P₂V₂)/T₂
⇒V₂/V₁ = (P₁/P₂)×(T₂/T₁)
Inserting this value in (3)
(S₂ - S₁) = mCv ln (T₂/T₁) + mR ln [(P₁/P₂)×(T₂/T₁)]
(S₂ - S₁) = mCv ln (T₂/T₁) + mR ln (P₁/P₂)+ mR ln (T₂/T₁)
(S₂ - S₁) = m ln (T₂/T₁)×( Cv+R) + mR ln (P₁/P₂)
(S₂ - S₁) = mCp ln (T₂/T₁) + mR ln (P₁/P₂)
3. In terms of pressure and volume
We know that
(P₁V₁)/T₁ = (P₂V₂)/T₂
⇒T₂/T₁ = (P₂/P₁)×(V₂/V₁)
Insering this value in (3)
(S₂ - S₁) = mCv ln (P₂/P₁)×(V₂/V₁) + mR ln (V₂/V₁)
(S₂ - S₁) = mCv ln (P₂/P₁) + mCv ln (V₂/V₁) + mR ln (V₂/V₁)
(S₂ - S₁) = mCv ln (P₂/P₁) + m ln (V₂/V₁)×(Cv+R)
(S₂ - S₁) = mCv ln (P₂/P₁) + mCp ln (V₂/V₁)


Comments